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On the assessment of molecular chirality

Alberta Ferrarini and Pier Luigi Nordio
Department of Physical Chemistry, University of Padova, 2 via Loredan, 35131 Padova, Italy

A property termed helicity tensor, defined on the basis of the molecular shape, is proposed to quantify
the chirality of arbitrary molecules. Numerical implementation of the model can be easily done, once
the molecular geometry is known. The principal components of the tensor represent helicities of the
molecular surface as viewed along the three perpendicular axes. Results are presented for a number of
systems, going from asymmetrically substituted methane derivatives to complex helicoidal structures.
Although originally derived to predict the twisting power of chiral probes dissolved in liquid crystal
solvents, the concept of helicity tensor provides a useful tool for many applications of molecular
engineering.

Introduction

The concept of chirality is of utmost relevance in chemistry,
and interest in the field has been renewed by studies in liquid
crystal phases,1 which have provided unique opportunities for
investigating a variety of chiral solutes, opening the road to
fascinating technological applications. When attempting to
rationalize physical or chemical properties associated with
chiral molecules, the central problem is how chirality can be
quantified for arbitrary molecular systems. Chiral molecules
are usually characterized by measuring their optical rotation or
circular dichroism spectra. Both methods are spectroscopic,
involving interaction of the electromagnetic radiation with the
electrons of the molecules. Although it would be desirable to
deduce the absolute configuration from optical rotation meas-
urements, this is not a simple matter.2,3 One of the difficulties
with optical rotation at a given wavelength depends on the fact
that it represents a sum of oppositely-signed contributions from
all the spectroscopic transitions in the chiral molecule. CD
spectra allow in principle a study of the electronic transition of
interest, but their use for assigning absolute configurations is
often prevented by the fact that molecular orbital calculations
for excited states are still far from being reliable. An alternative
non-spectroscopic way of characterizing chiral molecules has
recently been proposed based on the measurement of their
twisting power in nematic liquid crystals.4–9 It is known that
addition of traces of a chiral solute to an achiral liquid crystal
induces the formation of a helical superstructure characterized
by its handedness and pitch. When the liquid crystal solvent is a
nematic one, a ‘twisted nematic’ structure, traditionally termed
rather improperly as ‘cholesteric’, is obtained. In the cholesteric
phase, the local axis of preferential alignment (the ‘director’)
rotates in space when moving along the helical axis. If the start-
ing achiral mesophase is Smectic-C, where elongated molecules
are organized in layers and the director is tilted away from the
normal to the smectic planes, chiral solutes induce the chiral
Smectic-C* phase. In such a phase, the projection of the dir-
ector in the smectic planes rotates when moving perpendicu-
larly to the planes. Equal amounts of enantiomeric solutes
induce helical structures with identical pitch and opposite
handedness. In the case of nematics, different substances show
different abilities to twist the nematic phase, the twisting power
of a given enantiomer being defined by eqn. (1), where p is the

1/β = ±px (1)

pitch (in µm) and x is the mole fraction of dopant. Experi-
mentalists generally define the dopant concentration in moles
of solute per mole of solvent,4 but on theoretical ground the use
of the molar fraction is preferable; however, at the low concen-

trations for which the equation holds the two definitions are
practically equivalent. In the above equation the signs 1 and 2
indicate right-handed and left-handed helices, respectively. The
value of β is constant over a large interval of concentrations
and changes with the nature of the solvent. The twisting power
can therefore characterize a chiral molecule in a similar way
to optical rotation; as β is a non spectroscopic quantity, it is
expected to give different and hopefully complementary stereo-
chemical information.6,7

It is interesting to note that both optical rotatory power and
twisting power, as physical manifestations of molecular chiral-
ity, have originated very recently new methods for assessing
the chiral characters of particular probes, on the basis of
their molecular shape. Ferrarini, Moro and Nordio 10–13 have
developed a model able to relate the twisting power of a chiral
solute to a ‘helicity’ tensor deduced from the probe shape, in
addition to order and elastic properties of the nematic solvents.
According to this model, the twisted shape of the chiral
probe was assumed to exert a torque on the local nematic
director, this effect being transmitted at distances of thou-
sands of molecular lengths by virtue of the elastic properties
of the nematic medium.14 Osipov, Pickup and Dunmur 15

have taken the manifestation of optical activity as a basis for
chirality indices. A second-rank gyration chirality tensor G
was defined under the assumption that a point density at
atomic positions could be substituted for the atomic polariz-
abilities. In terms of G-tensor components two indices were
obtained, the first being given by the tensor trace, and the
second by the determinant of the corresponding traceless
symmetric tensor. The two quantities were referred to as
‘chirality index’ and ‘chirality anisotropy’, respectively. Other
authors have followed a somewhat different approach, on the
basis that ‘chirality’ is a morphologic property susceptible of
exact determination on mathematical grounds, independently
of its physical manifestation. A critical review of the methods
proposed to solve this problem has been recently presented
by Mislow and co-workers.16 A recently proposed method is
based on the so-called continuous chirality measure, which
essentially consists in representing a chiral object as a collec-
tion of connected vertices and by determining the minimal
distance that vertices must move in order to attain the nearest
achiral symmetry group.17 The method represents a sophisti-
cated variant of procedures where molecular chirality is sim-
ply measured by the overlapping volume when left and right
enantiomers are maximally superimposed.16

Prediction of properties from molecular shape
The idea that ‘chirality’ is a morphological property susceptible
of mathematical determination is not contradictory with the



456 J. Chem. Soc., Perkin Trans. 2, 1998

argument that approximate definitions of this property for an
actual object of arbitrary shape can be given in an infinite num-
ber of ways. This conclusion can be easily understood by con-
sidering the problem of defining the shape of an achiral object.
If we take a rectangular parallelepiped, there is obviously no
problem: it suffices to give three side lengths, or the areas of
three distinct faces. But if we consider, for instance, the solid
model of the anthracene molecule, constructed as an assembly
of van der Waals spheres, the choice is not so obvious. We might
give the maximal lengths along the symmetry axes, or the areas
of the surfaces obtained by projecting the molecule onto three
orthogonal planes, but there is no simple relation between the
two sets of data. For objects of lower symmetry, the task of
defining the shape is even more complex. The problem is remin-
iscent of that encountered in crystal field theory: the functional
form for the potential field generated by an assembly of electric
charges can only be given as a series expansion, and the accur-
acy of the lowest order terms in representing the true potential
field will depend upon the choice of the basis set. As a matter of
fact, a cubic distribution is equivalent to a spherical one, at the
lowest orders. In this spirit, we intend now to show that a par-
ticular second-rank pseudotensor, defined to interpret the twist-
ing power of chiral probes when dissolved in liquid crystalline
phases, provides a physically reasonable and a mathematically
tractable description of the chiral character of a given
molecule.

We shall therefore organize the paper as follows. At first, as
an introductory example, we discuss an analytical solution to
the problem of representing arbitrary molecular shapes, by
developing the ideas outlined at the beginning of this section.
This is achieved on the basis of the so-called surface tensor
parametrization, which was introduced to interpret ordering
properties of molecules in liquid crystal environments.18,19 The
surface tensor, a symmetric second-rank tensor, provides a use-
ful description of the shape of a molecule, but it is unable to
ascertain its chiral character; we shall therefore resort to the
helicity tensor derived as an extension of the surface tensor
concept. Apart from a discussion of a model chiral system,
provided by a simple helix, numerical values of the surface and
helicity tensors will be given for a number of chiral moieties,
namely heptalene, biphenyl, binaphthyl, bianthryl and for the
non-chiral tetramethylspirobipyrrolidinium ion. The numerical
values of tensor components obtained by the mathematical
model will be discussed in terms of experimental observables
and molecular symmetry.

Shape models
The surface and helicity tensors
The surface and helicity tensors were derived in the context of
the analysis of the orientational behaviour of molecules of
arbitrary shape in liquid crystal environments.10–13 The orient-
ing potential experienced by the dissolved probe in a locally
nematic phase was then taken as the integral over the molecular
surface of contributions forcing the normal s→ to each surface
element to align perpendicular to the local director d

→
. In the

cholesteric phase the director rotates about an axis producing
a helical macrostructure characterized by the pitch p. Thus,
in a laboratory frame with the Y axis parallel to the helical
axis, the director at the position r→ is defined by eqn. (2),

d
→

= u→Z cos (q→ ? r→ ) 1 u→X sin (q→ ? r→ ) (2)

where u→Z and u→X are unit vectors along the X and Z laboratory
reference axes and q→ is a vector parallel to the Y-axis of length
q = 2π/p. A power expansion of the orienting potential for
q → 0, justified by the large values of p compared to mol-
ecular dimensions, leads to the definition of a second-rank
tensor t, and a third-rank pseudotensor q(3), with elements:13

tij = 2〈si sj〉 (3)

and

qijk
(3) = 23〈sirj sk〉 (4)

with si representing direction cosines of s→ in a molecular frame
with the origin O at the origin of the laboratory frame and r→ the
position vector of the surface element. The angular brackets
denote integration over the molecular surface. In fact, the
quantity of interest to correlate with molecular chirality is the
symmetric part of the second-rank pseudo-tensor q associated
with q(3), whose elements are given by eqn. (5), where εikl are

qij = 2o
k,l

εikl〈rksl sj〉 (5)

Levi–Civita symbols. In analogy with the results obtained for
the roto-translation coupling tensor for an object of arbitrary
shape,20 a unique point R at which the tensor q is symmetric,
always exists. The transformation law is given by eqn. (6), where

qR = qO 2 r→OR × t (6)

r→OR is the position vector of R relative to O. In the following
the superscript will be neglected, with the implicit assumption
that the origin of the molecular frame is in R. It should be
recalled that pseudotensor components transform as direct
products of polar vector and axial vector components, and
Table 1 lists tensor components which are compatible with
specific molecular symmetries,21–23 for some selected point
groups.

The tensors t and q have a straightforward geometrical inter-
pretation. The element tii gives the contribution to the surface
area of the molecule as viewed along the ith molecular axis, the
sum of the diagonal elements tii being, apart from the sign,
numerically equal to the surface area S, eqn. (7).

Tr t = 2S (7)

The tensor component qii is the helicity along the i direction,
i.e. the amount of surface rotation associated with translation
along this direction. It has to be remarked that the two tensors
are not exactly the surface tensor T and the helicity tensor Q
defined in refs. 10–13, to which, however, they are related by the
following expressions:

T =
3t 1 S1

√
–
6

(8)

where 1 is the unit matrix, and

Q = √3/2 q (9)

Table 1 Components of second-rank A-tensors and B-pseudotensors
which transform according to the totally symmetric irreducible repre-
sentation, for some selected enantiomorphous groups, and for all non-
enantiomorphous groups which admit non-vanishing second-rank
pseudotensor components 

Enantiomorphous groups

C2 
C3, C4 
D2 
D3, D4 
T, O, I 

Axx, Ayy, Azz, Axy, Ayx 
A|| = Azz, A⊥ = (Axx 1 Ayy)/2 
Axx, Ayy, Azz 
A||, A⊥ 
Tr A 

Bxx, Byy, Bzz, Bxy, Byx 
B|| = Bzz, B⊥ = (Bxx 1 Byy)/2 
Bxx, Byy, Bzz 
B||, B⊥ 
Tr B 

Nonenantiomorphous groups 

Ch 
C2v 
D2d 
S4 

Axx, Ayy, Azz, Axy, Ayx 
Axx, Ayy, Azz 
A||, A⊥ 
A||, A⊥ 

Bxz, Bzx, Byz, Bzy 
Bxy, Byx 
Bxx 2 Byy 
Bxx 2 Byy, Bxy 1 Byx 
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However, for the sake of simplicity, we shall refer in the fol-
lowing to the tensors t and q, which will be also termed as
surface and helicity tensor, respectively.

Numerical evaluation of t and q tensors is based on the def-
inition of the molecular surface. This is accomplished by con-
sidering a molecule as an assembly of beads centred at the
atomic positions, and assuming van der Waals radii for the
beads.24 However, it is worth emphasizing that the magnitude of
both helicity and surface tensors is somewhat dependent upon
the definition of the molecular surface. In fact, it has been sug-
gested that some smoothing of the surface obtained by simple
superimposition of van der Waals spheres may provide a better
description of the exposed molecular surface.25 For the sake of
simplicity this effect is ignored here, but it will be discussed in a
forthcoming paper.26

Model predictions for selected systems
To gain an insight into the physical meaning of surface and
helicity tensors, it is useful to consider in some detail the
example of the helix shown in Fig. 1, a simple chiral object
obtained by counter-rotating about the x axis two opposite
ends of a rectangle lying on the xz plane. The helix is character-
ized by 2φ0, the dihedral angle between the two ends. According
to the usual convention, P and M labels are associated with the
right- and left-handed helix, respectively, corresponding to
opposite φ0 values. The helix has D2 symmetry and both t and q
tensors are diagonal in a frame with the axes parallel to the C2

axes. Fig. 2 shows the principal elements of the tensors for a
right-handed helix of breadth 2 Å and length lx equal to 6 Å,
as a function of the angle φ0. For φ0 = 0 the helix reduces to a
rectangle: thus both txx and tzz vanish, and the tyy component is
equal to the whole surface area, changed in sign. Fig. 2(a)
shows that with increasing twist angle the surface contribution
perpendicular to the x axis remains close to zero, while the z
component increases in absolute value and the y component
correspondingly decreases. More interesting is the behaviour of
the q tensor, displayed in Fig. 2(b). When considering a helix,
the concept of helicity is naturally associated with the degree of
distortion about the torsion axis. However, we see from the
figure that the helicity about this axis comes out to be smaller
than those about the z and y axes.

A similar helix-like behaviour is predicted for chiral mol-
ecules made up of two aromatic rings linked by a bond, which

Fig. 1 Right-handed helix taken as a model in the text. The helix is
obtained by twisting about the x axis a rectangle defined on the xz
plane.

become chiral when the rings are not coplanar. Both surface
and helicity tensors are functions of the twist angle between the
aromatic moieties, and the helicity along the torsion axis, which
is usually referred to when assigning the P, M labels, is also for
these cases smaller than those along perpendicular axes.12 Table
2 reports t and q components for P-configurations of biphenyl,
1,19-binaphthyl, 1,19-bianthryl and 9,99-bianthryl with a twist
angle of 408. Obviously these are only hypothetical structures,
because these molecules are characterized by torsional freedom
about the ring–ring bond, and a given configuration can be
stabilized only by suitable chemical substitution.27 For the sake
of comparison, the same value of 408 has been taken for all the
biaryl systems examined here, even though it is physically justi-

Fig. 2 Components of the tensors t (a) and q (b) for the helical surface
of Fig. 1, as functions of φ0, 2φ0 being the dihedral angle between the
two ends of the helix. Breadth and length of the helix have been taken
equal to 2 and 6 Å, respectively.

Table 2 Nonzero components of t and q tensors for P-biaryl struc-
tures with a 408 twist angle. The numerical values are in units Å2 and Å3

for t and q components, respectively. The z-axis coincides with a C2

symmetry axis, and x is the principal axis of the t tensor closest to the
inter-ring bond.

Biphenyl (D2) 
 
t 
q 

xx 
241.4 

2.1 

yy 
289.6 

31.3 

zz 
260.5 
233.4 

xy 
0 
0

1,19-Binaphthyl (C2) 

 
t 
q 
q a 

xx 
264.7 

5.6 
4.0 

yy 
2129.7 

50.0 
51.6 

zz 
271.9 
255.6 
255.6 

xy 
0 

28.6 
0 

1,19-Bianthryl (C2) 

 
t 
q 
q b 

xx 
292.3 

4.5 
0.9 

yy 
2173.2 

81.2 
84.8 

zz 
285.2 
285.7 
285.7 

xy 
0 

217.2 
0 

9,99-Bianthryl (D2) 

 
t 
q 

xx 
288.7

18.2 

yy 
2169.3 

65.7 

zz 
283.3 
283.9 

xy 
0 
0 

a Principal axis system of q obtained from that of t by rotation of ca.
10.58 about z. b Principal axis system of q obtained from that of t by
rotation of ca. 128 about z. 
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fied only for biphenyl-like molecules. The tensor components in
Table 2 are expressed in the principal frame of t, unless speci-
fied otherwise. For the two structures with D2 symmetry, i.e.
biphenyl and 9,99-bianthryl, t and q share their principal
frames with the coordinate axes parallel to the three C2 axes. In
particular the axes are chosen in such a way that the x and z
axes are parallel to the inter-ring bond and to the axis bisecting
the acute dihedral angle between the aromatic moieties, respect-
ively. For 1,19-binaphthyl and 1,19-bianthryl, which have C2

symmetry, there is a single principal axis of t and q which is
unambiguously defined by symmetry: it is parallel to the C2

axis and is denoted as z. In both cases one of the principal
axes of t comes out to be close to the ring-ring bond, and
this is labelled as x. As far as the t tensor is concerned, we
see from Table 2 that, as for the helix, the tyy component is
larger in absolute value than the others, which in turn tend to
become equivalent for the most bulky derivatives. In analogy
with the P-helix, the qxx element is positive and smaller in
absolute value than qyy and qzz, which increase in magnitude
with the dimensions of the biaryl systems. By analogy with
roto-translational coupling effects, one can easily understand
that the helix in Fig. 1 is more effective as a propeller if it is
allowed to spin around the y or z axis rather than the x axis.
One can also notice that the y and z axes correspond to
opposite spinning directions.

A somewhat more complex example of a chiral molecule is
offered by the heptalene system, for which the existence of two
opposite helicities perpendicular to the C2 axis was previously
recognized.28 Even this molecule can be stabilized in a specific
enantiomeric form by suitable substitution but, for the sake of
clarity, we shall consider the simple heptalene skeleton, which
exhibits a strongly distorted shape with alternation of single
and double bond character in the peripheral carbon–carbon
bonds. The numerical values obtained for t and q tensor com-
ponents are reported in Table 3 for the M enantiomer, the con-
figuration being now attributed according to the helicity along
the bond common to the two rings.28 Again, the tensors are
expressed in the principal frame of t unless specified otherwise;
the z axis is taken along the C2 direction, and the y label is
appointed to the axis closer to the bond common to the rings.
By comparing the results obtained for heptalene with the data
reported in Table 2, we see that the principal elements of the t
tensor are close to those for biphenyl, and this is not surprising
given the similar dimensions of the two molecules. However, the
q tensors are rather different, the component qxx being much
larger in the case of heptalene. Fig. 3 shows the heptalene struc-
ture projected onto the principal planes of the helicity tensor,
and this provides a picture of the helicities viewed along the

Table 3 Nonzero components of t and q tensors for the chiral
heptalene molecule and the nonchiral tetramethylspirobipyrrolidinium
ion. The numerical values are in units Å2 and Å3 for t and q com-
ponents, respectively. For both molecules the z-axis is taken along the
C2 symmetry axis. In the case of heptalene x is the principal axis of
the t tensor in the direction of the long molecular axis, while for the
tetramethylspirobipyrrolidinium ion, characterized by an axially sym-
metric t tensor, the x and y axes are taken parallel to the ring planes. 

(M)-Heptalene (C2) 
 
t 
q 
q a 

xx 
245.5 

18.3 
18.7 

yy 
261.5 
234.8 
235.2 

zz 
278.0 

16.5 
16.5 

xy 
0 
4.9 
0 

Tetramethylspirobipyrrolidinium ion (S4) 

 
t 
q 
q b 

xx 
2101.2 

17.1 
21.2 

yy 
2101.2 
217.1
221.2 

zz 
270.9 

0 
0 

xy 
0 

12.6 
0 

a Principal axis system obtained from that of t by rotation of ca. 58
about z. b Principal axis system obtained by rotation of ca. 188 about z. 

three perpendicular axes, and an explanation for the relatively
large value of qxx, as discussed later.

It is well known that a necessary condition for optical activity
in the isotropic liquid phase is molecular enantiomorphism, i.e.
the existence for the same molecule of two distinct configur-
ations which are mirror images of each other. For rigidly
oriented molecules, however, optical activity can occur in the
nonenantiomorphous classes Ch, C2v, D2d and S4.

22,29 Let us
briefly treat as an example the case of a molecule belonging to
the S4 point group, the tetramethylspirobipyrrolidinium ion.29

From Table 1 we find that linear combinations of second-rank
pseudotensor components which transform according to the
totally symmetric irreducible representation of S4 are Bxx 2 Byy

and Bxy 1 Byx. Any pseudotensor will therefore be traceless and
symmetric, and when expressed in a reference frame having
as z-axis the rotation axis, it will have diagonal components
Bxx = 2Byy and Bzz = 0, because Bxx 1 Byy, Bzz and Bxy 2 Byx

do not transform according to the totally symmetric irreducible
representation of the group. This obviously agrees with the fact
that optical activity in isotropic solutions cannot be observed
for molecules of S4 symmetry. However, two principal axes x
and y will exist, perpendicular to the rotation axis z but not
directly identifiable by symmetry, corresponding to two non-
zero principal values of the pseudotensor, equal in magnitude
but opposite in sign. The results for the helicity tensor calcu-
lated for the tetramethylspirobipyrrolidinium ion and reported
in Table 3 agree with this conclusion.

The examples presented here show how detailed information
about molecular morphology, and molecular chirality in par-
ticular, can be obtained from the simultaneous analysis of the
elements of the t and q tensors. It should be recalled that q is
intrinsically traceless, thus two principal components must be
given as independent information on the chiral character of a
molecule. Chemists however are accustomed to use a single
index (P-M, or R-S) to define the absolute configuration of a
single enantiomeric form. It may be appealing to define a single
pseudoscalar associated with the overall chirality content of the
surface, i.e. a number which assumes the same absolute value
but opposite sign for the two enantiomeric forms of a chiral
molecule. The simplest way to obtain such an index, by using
the same ingredients developed so far, is to take the following
product:

χ = 21000(qxxtxx 1 qyytyy 1 qzztzz)/S
5/2 (10)

Fig. 3 Projections of the (M)-heptalene skeleton on the principal
planes of the q tensor. The axes perpendicular to the various projection
planes are indicated.
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where the factor 1000 has been included to avoid numbers
too small. From symmetry considerations it follows that the
parameter χ vanishes for achiral systems. In addition, it has
opposite signs for two enantiomers, as a consequence of the
invariance of t and the change of sign of the q components.
Similarity invariance 16 is ensured by the normalizing factor
S5/2, which makes the product independent of the molecular
surface S. Table 4 reports χ values calculated for the systems
discussed above, in addition to some chiral ethane derivatives.

For the sake of comparison, we have also reported in Table 3
the chirality order parameters Q, defined as:13

Q = 2√2
3–(QxxSxx 1 QyySyy 1 QzzSzz) (11)

where Sii are the principal values of the molecule ordering mat-
rix, which in turn is determined by the orienting potential
defined in terms of the surface tensor.10–13 The components Qii

refer to the tensor defined in eqn. (9). The chirality order
parameters have a direct physical meaning, since they are
related to the helical twisting power of molecules dissolved in
nematic solvents, eqn. (12), where K22, vm and ε are solvent

β = RTεQ /2πK22vm (12)

properties, namely, twist elastic constant, molar volume and
orienting strength, respectively.

We see from Table 4 that high χ parameters are calculated
for biaryls, with values which increase going from biphenyl to
binaphthyl, and then to bianthryls. In the latter case, a lower
chirality parameter is obtained for the most symmetric deriv-
ative. The extremely small χ values presented by ethane deriv-
atives can be explained on the basis of the very low dissym-
metry of the molecular surfaces. It is interesting to note that the
χ values increase along the series Cl, Br and I, as expected on
the basis of the increasing dimension of the substituent. The
low values for both β and χ for heptalene results from cancel-
lation of relatively large terms of opposite signs. Of course,
χ vanishes for the tetramethylspirobipyrrolidinium ion, as it
should.

Conclusions
The helicity tensor model illustrated in this paper provides a
mathematically simple and physically acceptable descriptor of
molecular chiral properties. Being based on the detailed
description of the molecular surface, it appears more suitable
than topological or combinatorial models for interpreting
specific interactions of a dopant with its surroundings, or
for studying quantitative structure–activity relationships. The
analysis of the surface helicity is very accurate in comparison
with models where the molecular shape is given only in terms of

Table 4 Chirality parameter χ and chirality order parameter Q

calculated for various rigid structures. In the case of biaryls a 408 twist
angle has been assumed. The Q values have been obtained according to
eqn. (11), with orientational order parameters Sii calculated from the
molecular surface tensors and consistent with an orientational strength
parameter ε = 0.05 Å22. This value corresponds for any nematic solvent
to the same reduced temperature Tred = T/TNI ≈ 0.95, TNI being the
isotropic-nematic transition temperature.12 

 

(R)-CH3CHFCl 
(R)-CH3CHFBr 
(R)-CH3CHFI 
(P)-Biphenyl 
(P)-1,19-Binaphthyl 
(P)-1,19-Bianthryl 
(P)-9,99-Bianthryl 
(M)-Heptalene 
Tetramethylspirobipyrrolidinium 

χ 

0.006 
0.008 
0.010 
1.7 
3.0 
3.8 
3.3 

20.05 
0 

Q/Å3 

0.006 
0.010 
0.015 
5.0 

20.6 
54.2 
44.1 

22.9 
0 

nuclear coordinates. Under this respect, it is worth noting that
the Osipov model reflects the original physical basis, aimed at
interpreting the optical activity by approximating the elec-
tronic distribution with delta functions peaked at the nuclear
positions.15

When applied to the evaluation of twisting power for chiral
probes in liquid crystals, the helicity tensor parametrization
provides satisfactory quantitative predictions.12,13 In fact, the
model is so sensitive to the details of the molecular shape that it
distinguishes between isomeric forms of substituted heptalenes
differing only in the positions of the double bonds (see values
reported for the heptalene derivatives 3 and 4 in ref. 12). For the
cases of biphenyl and heptalene, which have not too dissimilar
dimensions, it is interesting to note that the main difference
between the calculated helicities reported in Tables 2 and 3
comes from the component relative to the long molecular axis,
whose value is ca. 2 and 20 Å3, respectively. This behaviour can
be understood by considering that biphenyl resembles the helix
discussed earlier, for which the helicity along the twisting direc-
tion is small, while the heptalene shape could be rather
described as that of a flat ellipsoid twisted about the long axis.
By looking at the heptalene molecules along the principal axes
of the helicity tensor as drawn in Fig. 3, one can appreciate that
the signs of the helicities reported in Table 2 agree with the
usual convention leading to P, M labels.28 Obviously, the advan-
tage of the model is that of quantifying those helicities, so pro-
viding a criterion to distinguish between molecules of similar
size but different shape. The model therefore provides a tool
which can be useful in molecular engineering, for example by
selecting suitable shapes to ensure the desired twisting power
for optical devices, to optimize template–receptor interactions
in stereospecific biochemical reactions and to guide the chem-
ical synthesis of pharmaceutical products with specific func-
tions. With this objective in mind, the pseudoscalar quantity χ
defined in eqn. (10) is actually of little practical utility, apart
from being expressed by a single rational number instead of a
tensorial quantity. Not even the chirality order parameter Q is
informative as a chirality index: it represents the helical twisting
power of a chiral probe, a physical property which is the result
of competing effects related to the shape of the probe and the
orienting torques exerted by the anisotropic environment. As a
matter of fact, variations of the ordering matrix components Sii

with temperature can even change the sign of the twisting
power for a given molecular enantiomer.12 Therefore, we should
stress that complete information on the chirality properties of a
molecule must be given in terms of the principal components of
the helicity tensor.

One might inquire whether any relation can be found
between the helicity tensor discussed here and that defining the
rotational strength of optical transitions.30 In fact, no relation
can exist with the optical activity measured in isotropic solu-
tions, because this has to do with the trace of the rotational
strength tensor, and the q-tensor we are dealing with here
is traceless. Irreducible second-rank components 31 of the
rotational strength tensor should in principle be compared with
the components of q, but it is unlikely to find any parallel
between physically distinct properties, even if optical properties
too might eventually be traced back to molecular shape.32

To conclude, a comment on the difference between helicity
characteristics of molecules belonging to enantiomorphous
and nonenantiomorphous groups may be useful. Symmetry
requirements for the two categories are given in Table 1. All
three principal values of q are generally nonzero in the enantio-
morphous groups, while only two principal components of
opposite sign are permissible for all nonenantiomorphous point
groups. It may happen that even in enantiomorphic objects one
of the principal values of q is accidentally zero, as in the case of
the two-blade propeller discussed in ref. 12, and so in this par-
ticular case the two nonzero components will also have equal
magnitude and opposite sign. Only molecules belonging to
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enantiomorphous groups can be termed chiral, because they
can exist in two forms which are mirror images of each other.
However, molecules belonging to nonenantiomorphous groups
possess two perpendicular axes, along which ‘helical’ forms of
opposite sign can be identified.33 The two forms are related by a
mirror plane which is also a symmetry plane, so that they cor-
respond to distinct observables on the same object, which can
actually be measured only if this is held rigidly in space. In
principle, such systems could be studied in special liquid crystal
phases, but early observations 34,35 in nematics have proven to be
erroneous.36
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